Book Library

Read or Download Book Online

Download: [PDF] introduction to topology and geometry

Introduction To Geometry And Topology

Introduction to Geometry and Topology PDF

Get Book

Author: Werner Ballmann
Publisher: Birkhäuser
ISBN: 3034809832
Size: 26.32 MB
Format: PDF, Docs
Category : Mathematics
Languages : un
Pages : 169
View: 5352

Book Description: This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Introduction To Topology And Geometry

Introduction to Topology and Geometry PDF

Get Book

Author: Saul Stahl
Publisher: John Wiley & Sons
ISBN: 1118546148
Size: 35.71 MB
Format: PDF, Mobi
Category : Mathematics
Languages : un
Pages : 536
View: 7702

Book Description: An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition “. . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained.” —CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparalleled range of topics. Illustrating modern mathematical topics, Introduction to Topology and Geometry, Second Edition discusses introductory topology, algebraic topology, knot theory, the geometry of surfaces, Riemann geometries, fundamental groups, and differential geometry, which opens the doors to a wealth of applications. With its logical, yet flexible, organization, the Second Edition: • Explores historical notes interspersed throughout the exposition to provide readers with a feel for how the mathematical disciplines and theorems came into being • Provides exercises ranging from routine to challenging, allowing readers at varying levels of study to master the concepts and methods • Bridges seemingly disparate topics by creating thoughtful and logical connections • Contains coverage on the elements of polytope theory, which acquaints readers with an exposition of modern theory Introduction to Topology and Geometry, Second Edition is an excellent introductory text for topology and geometry courses at the upper-undergraduate level. In addition, the book serves as an ideal reference for professionals interested in gaining a deeper understanding of the topic.

A Combinatorial Introduction To Topology

A Combinatorial Introduction to Topology PDF

Get Book

Author: Michael Henle
Publisher: Courier Corporation
ISBN: 9780486679662
Size: 54.65 MB
Format: PDF, Mobi
Category : Mathematics
Languages : un
Pages : 310
View: 4337

Book Description: Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Geometry With An Introduction To Cosmic Topology

Geometry with an Introduction to Cosmic Topology PDF

Get Book

Author: Michael P. Hitchman
Publisher: Jones & Bartlett Learning
ISBN: 0763754579
Size: 30.59 MB
Format: PDF, Mobi
Category : Mathematics
Languages : un
Pages : 238
View: 641

Book Description: The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.

An Illustrated Introduction To Topology And Homotopy

An Illustrated Introduction to Topology and Homotopy PDF

Get Book

Author: Sasho Kalajdzievski
Publisher: CRC Press
ISBN: 1482220814
Size: 74.29 MB
Format: PDF
Category : Mathematics
Languages : un
Pages : 485
View: 5709

Book Description: An Illustrated Introduction to Topology and Homotopy explores the beauty of topology and homotopy theory in a direct and engaging manner while illustrating the power of the theory through many, often surprising, applications. This self-contained book takes a visual and rigorous approach that incorporates both extensive illustrations and full proofs

Introduction To Topological Manifolds

Introduction to Topological Manifolds PDF

Get Book

Author: John Lee
Publisher: Springer Science & Business Media
ISBN: 1441979409
Size: 41.89 MB
Format: PDF, Kindle
Category : Mathematics
Languages : un
Pages : 433
View: 1736

Book Description: This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.

Differentialgeometrie Topologie Und Physik

Differentialgeometrie  Topologie und Physik PDF

Get Book

Author: Mikio Nakahara
Publisher: Springer-Verlag
ISBN: 3662453002
Size: 71.25 MB
Format: PDF
Category : Science
Languages : de
Pages : 597
View: 4337

Book Description: Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

An Introduction To Geometric Topology

An Introduction to Geometric Topology PDF

Get Book

Author: Bruno Martelli
Publisher: Createspace Independent Publishing Platform
ISBN: 9781539580232
Size: 80.61 MB
Format: PDF, Kindle
Category : Geometry, Hyperbolic
Languages : un
Pages : 488
View: 3911

Book Description: This book provides a self-contained introduction to the topology and geometry of surfaces and three-manifolds. The main goal is to describe Thurston's geometrisation of three-manifolds, proved by Perelman in 2002. The book is divided into three parts: the first is devoted to hyperbolic geometry, the second to surfaces, and the third to three-manifolds. It contains complete proofs of Mostow's rigidity, the thick-thin decomposition, Thurston's classification of the diffeomorphisms of surfaces (via Bonahon's geodesic currents), the prime and JSJ decomposition, the topological and geometric classification of Seifert manifolds, and Thurston's hyperbolic Dehn filling Theorem.

Knots Molecules And The Universe

Knots  Molecules  and the Universe PDF

Get Book

Author: Erica Flapan
Publisher: American Mathematical Soc.
ISBN: 1470425351
Size: 80.92 MB
Format: PDF, Mobi
Category : Algebraic topology
Languages : un
Pages : 386
View: 1345

Book Description: This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.

Introduction To Topology

Introduction to Topology PDF

Get Book

Author: Bert Mendelson
Publisher: Courier Corporation
ISBN: 9780486663524
Size: 71.81 MB
Format: PDF, Kindle
Category : Mathematics
Languages : un
Pages : 206
View: 646

Book Description: Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.


Topology PDF

Get Book

Author: Stefan Waldmann
Publisher: Springer
ISBN: 331909680X
Size: 13.30 MB
Format: PDF, Mobi
Category : Mathematics
Languages : un
Pages : 136
View: 3873

Book Description: This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course.

Introduction To Metric And Topological Spaces

Introduction to Metric and Topological Spaces PDF

Get Book

Author: Wilson A Sutherland
Publisher: Oxford University Press
ISBN: 0191568309
Size: 54.92 MB
Format: PDF, Mobi
Category : Mathematics
Languages : un
Pages : 219
View: 2370

Book Description: One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.